Injection enhancement via controlled, spatially-resolved, electrical
doping of an organic molecular material
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Electrical doping of organic molecular films is a very important way to increase charge carrier injection at interfaces. Given the fast
growing field of organic micro- and optoelectronic devices, considerable interest is given to schemes that improve carrier injection,
and thus increase device efficiencies and decrease drive voltages.

Heavy doping of a semiconductor interface produces a narrow depletion region, which allows tunneling of charge carriers through the
barrier (red arrow in (b)). The “effective injection barrier” is therefore considerably reduced with respect to the true barrier (black
arrow in (b).

We have recently demonstrated that the widely used hole transport molecular materials ZnPc (zinc phthalocyanine) [1,2] and a—NPD
(N,N’-diphenyl-N,N’-bis(l-naphthyl)-1,I’biphenyl-4,4’’diamine) [3] can be efficiently p-type doped with the strong electron acceptor
F,-TCNQ (tetrafluorotetracyanoquinodimethane) (Fig.(a)). Using our unique combination of direct and inverse photoemission
spectroscopy, we show that the doping mechanism corresponds to the transfer of a full electron from the highest occupied molecular
orbital of the a—NPD host to the lowest unoccupied molecular orbital of F,-TCNQ. The incorporation of the dopant molecules is
achieved via co-evaporation of a—NPD and F,-TCNQ. Fig. (b) shows the measured electronic structure and “band bending” in a film
of a—NPD:4%F ,-TCNQ deposited on a gold surface. The thickness of the depletion region is 3-4 nanometers, and the molecular level
bending is 0.48 eV. In addition, we are able to control the incorporation of dopant over film thicknesses of the order of 10
nanometers. Fig. (c) shows the current-voltage characteristics corresponding to the injection of holes from the Au substrate (see inset)
into a—NPD, when the film is undoped (77); doped over only 8 nm from the interface (%); homogeneously doped throughout the film
(e). Interface doping increases the current by nearly 4 orders of magnitude via tunneling! Homogeneous doping additionally increases
the film conductivity.
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Electronic Polarization at the
Surface of Molecular Films
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Electrical polarization dominates the physics and transport of charge carriers in molecular solids. When a charge (electron or hole) in
placed on a molecule, the electron distribution of the molecule and of its neighbors is perturbed (schematic in upper right corner).

The electronic (and atomic) rearrangement, also known as polarization, “screens” the excess charge and stabilizes it. Understanding
and evaluating polarization and its effect on molecular levels is exceedingly important in order to define “transport” levels, i.e. energy
levels at which single particles (electrons or holes) are transported through the organic materials.

We present here the first experimental evidence and quantitative assessment of varying polarization at the surface of a film of
PTCDA molecules (perylenetetracarboxylic dianhydride) as a function of film thickness and, thus, surface-to-metal-substrate
distance. The experimental evidence is obtained via ultra-violet and inverse photoemission spectroscopies (UPS/IPES) for

PTCDA /silver (upper panel of Fig.(a)) and scanning tunneling spectroscopy (STS) for PTCDA/gold (lower panel of Fig. (a)). The
STS curves are taken on 1 and 3 molecular layer films exhibiting high molecular order. The UPS/IPES and STS curves show the
highest occupied and lowest unoccupied molecular orbitals and the energy gap. In both cases, these electronics states shift by ~0.2-0.3
eV away from the center of the gap with increasing film thickness, in accord with decreasing polarization.

These measurements are beautifully confirmed by self-consistent and fully converged calculations (Fig. (b)) performed for films of N
molecular planes placed on a metal substrate, with a distance h between the metal surface and the interface molecular plane. The
calculations yield the total polarization P (electron + hole) in the bulk (1.82 eV), at the surface of a monolayer film on the metal
surface ((1.92 eV) as well as at the surface of an infinitely thick film (N large) (1.41 eV). The inset of Fig. (b) shows the impact of
polarization on the single-particle energy gap of a 10 molecular plane films, from the interface (layer number = 1) to the surface of
the film.
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